AL/HR-TP-1997-0052 # UNITED STATES AIR FORCE ARMSTRONG LABORATORY # A TALE OF TWO TEST BATTERIES: A COMPARISON OF THE AIR FORCE OFFICER QUALIFYING TEST AND THE MULTIDIMENSIONAL APTITUDE BATTERY Thomas R. Carretta HUMAN RESOURCES DIRECTORATE Aircrew Training Research Division 7909 Lindbergh Drive Brooks Air Force Base TX 78235-5352 Paul D. Retzlaff Joseph D. Callister, Captain, USAF AEROSPACE MEDICINE DIRECTORATE Clinical Sciences Division 2507 Kennedy Circle Brooks Air Force Base TX 78235-5117 Raymond E. King, Major, USAF CREW SYSTEMS DIRECTORATE Human Engineering Division 22 H Street Wright-Patterson Air Force Base OH 45433-7022 DTIC QUALITY INSPECTED 2 December 1997 Approved for public release; distribution is unlimited. 19980325 068 AIR FORCE MATERIEL COMMAND ARMSTRONG LABORATORY HUMAN RESOURCES DIRECTORATE AIRCREW TRAINING RESEARCH DIVISION 6001 South Power Road, Building 558 Mesa AZ 85206-0904 #### **NOTICE** Publication of this paper does not constitute approval or disapproval of the ideas or findings. It is published in the interest of scientific and technical information (STINFO) exchange. When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. The Office of Public Affairs has reviewed this paper, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals. This paper has been reviewed and is approved for publication. THOMAS R. CARRETTA Project Scientist DEE H. ANDREWS Technical Director LYNN A. CARROLL, Colonel, USAF Chief, Aircrew Training Research Division Please notify AL/HRPP, 7909 Lindbergh Drive, Brooks AFB, TX 78235-5352, if your address changes, or if you no longer want to receive our technical reports. You may write or call the STINFO Office at DSN 240-3853 or commercial (210) 536-3853. # REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | 1204, Allington, VA 22202-4302, and to the On | nice of Mariagement and Budget, Paperwork Rec | detion Froject (0704-0166), washingto | iii, DC 20505. | |---|---|--|--| | AGENCY USE ONLY (Leave bla | ank) 2. REPORT DATE
December 1997 | 3. REPORT TYPE AN | D DATES COVERED
e 1997 to August 1997 | | 4. TITLE AND SUBTITLE | | 111111111111111111111111111111111111111 | 5. FUNDING NUMBERS | | and the Multidimensional Aptit 6. AUTHOR(S) | | | PE - 62205F
PR - 1123
TA - A1
WU - 01 | | Carretta, T.R., Retzlaff, Paul D | D., Callister, Joseph D., King, F | Raymond E. | | | 7. PERFORMING ORGANIZATION | N NAME(S) AND ADDRESS(ES) | | 8. PERFORMING ORGANIZATION | | Armstrong Laboratory
Human Resources Directorate
Aircrew Training Rsch Div
7909 Lindbergh Drive
Brooks AFB TX 78235-5352 | Clinical Sciences Div Hur
2507 Kennedy Circle 225 | v Systems Dir
nan Engineering Div
5 H Street
AFB OH 45433-7022 | | | 9. SPONSORING/MONITORING A | AGENCY NAME(S) AND ADDRESS | (ES) | 10. SPONSORING/MONITORING | | Armstrong Laboratory Human
Aircrew Training Research Div
6001 S. Power Road, Bldg 561
Mesa AZ 85206-0904 | Resources Directorate ision | | AL/HR-TP-1997-0052 | | 11. SUPPLEMENTARY NOTES | | | | | Armstrong Laboratory Technic | al Monitor: Dr Thomas R. Carro | etta, (510)536-3922 | | | 12a. DISTRIBUTION/AVAILABILIT | Y STATEMENT | | 12b. DISTRIBUTION CODE | | Approved for public release; dis | stribution unlimited | | | | operationally administered as per
clinical test battery and was administered as per
evaluate pilots with cognitive real hierarchical structure. The high
The intercorrelation between the both batteries measured g and in | ng Test (AFOQT) and the Multic
dates to investigate the common
art of the officer commissioning
ninistered to provide an intellect
eferral questions. A joint factor a
gher-order factor in the AFOQT
e higher-order factors from the be
ncluded verbal, spatial, and perc
AB. Additional studies are require | sources of variance in the and aircrew selection test ual baseline to assist clini analysis of the AFOQT an previously had been iden patteries was .981, indicate the appropriate that the AFOQT and the action of t | tery (MAB) were administered to see batteries. The AFOQT was sing requirement. The MAB is a cians when it becomes necessary to d MAB revealed that each battery had tified as general cognitive ability (g). ing that both measured g. Although OQT also included tests of aviation of the AFOQT for clinical assessment | | | | • | | | · | | | | | 14. SUBJECT TERMS | | - 1 | 15. NUMBER OF PAGES | | AFOQT, Air Force Officer Qua
factor structure, Confirmatory i
Personnel measurement, Person | lifying Test, Aircrew selection, factor structure, MAB, Multidin | Cognitive ability, Companensional Aptitude Batter | rative 10 | | 17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 140 SECURITY OF A COLER | | | OF REPORT | OF THIS PAGE | 19. SECURITY CLASSIFIC
OF ABSTRACT | CATION 20. LIMITATION OF ABSTRACT | | UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIEI | O UNLIMITED | # **CONTENTS** | | | Page | |--------|---|------| | SUMM | MARY | . 1 | | INTRO | DDUCTION | 1 | | METH | IOD | 2 | | Pa | rticipants | 2 | | Me | easures | 2 | | Pro | ocedures | 2 | | Ar | nalyses | . 3 | | | LTS AND DISCUSSION | 3 | | REFEF | RENCES | 9 | | APPEN | NDIX A: | | | Со | onfirmatory Factor Analysis Solution for the Seven-Factor First-Order Model | 12 | | | FIGURES | | | Figure | | | | _ | Hierarchical Model | 7 | | | | | | | TABLES | | | Table | | | | 1 | Means and Standard Deviations for AFOQT and MAB Scores | 4 | | 2 | Correlation Matrix for AFOQT and MAB Scores | 5 | | 3 | First-Order Factor Intercorrelations | 6 | | A1 | Factor Loadings for the Seven-Factor Lower-Order Model | 13 | Preceding Page Blank #### **PREFACE** This effort was performed under Work Unit 1123A101, Pilot Selection and Classification Support, in support of Aircrew Selection and Classification (R&D). The authors thank Charles E. Lance, Malcolm James Ree, and William C. Tirre for their helpful comments. Send correspondence and requests for reprints to the first author at AL/HRAA, 7909 Lindbergh Drive, Brooks Air Force Base, TX 78235-5352. Send electronic mail to carretta@alhrm.brooks.af.mil. ### A TALE OF TWO TEST BATTERIES: A COMPARISON OF THE AIR FORCE OFFICER QUALIFYING TEST AND THE MULTIDIMENSIONAL APTITUDE BATTERY #### **SUMMARY** The Air Force Officer Qualifying Test (AFOQT) and Multidimensional Aptitude Battery (MAB) were administered to 2,233 US Air Force pilot candidates to investigate the common sources of variance in those batteries. The AFOQT was operationally administered as part of the officer commissioning and aircrew selection testing requirement. The MAB is a clinical test battery and was administered to provide an intellectual baseline to assist clinicians when it becomes necessary to evaluate pilots with cognitive referral questions. A joint factor analysis of the AFOQT and MAB revealed that each battery had an hierarchical structure. The higher-order factor in the AFOQT previously had been identified as general cognitive ability (g). The intercorrelation between the higher-order factors from the batteries was .981, indicating that both measured g. Although both batteries measured g and included verbal, spatial, and perceptual speed tests, the AFOQT also included tests of aviation knowledge not found in the MAB. Additional studies are required to evaluate the utility of the AFOQT for clinical assessment and the MAB for officer and aircrew selection. #### INTRODUCTION The Air Force Officer Qualifying Test (AFOQT) is used to qualify civilians and priorenlisted US Air Force (USAF) personnel for officer commissioning through the Officer Training School and Reserve Officer Training Corps programs. It is also used to qualify applicants who pass other educational and physical requirements for aircrew training. The AFOQT has been validated for pilot and navigator training (Arth, Steuck, Sorrentino, & Burke, 1990; Carretta, 1992; Carretta & Ree, 1995; Koonce, 1982; Olea & Ree, 1994; Ree & Carretta, 1996; Ree, Carretta, & Teachout, 1995) and for several other officer jobs (Arth, 1986; Arth & Skinner, 1986; Finegold & Rogers, 1985). In 1994, the Air Force Medical Operations Agency began a program to establish a psychological testing baseline for Air Force pilots. This baseline was intended to assist clinicians when evaluating pilots with cognitive referral questions (Callister, King, & Retzlaff, 1996; Retzlaff, Callister, & King, 1996). One of the tests used to establish this baseline is the Multidimensional Aptitude Battery (MAB) (Jackson, 1985). The MAB is normally administered in paper-and-pencil form. The USAF developed a computerized version which was administered to pilot candidates during a flight screening program (King & Flynn, 1995). The purpose of this study was to determine the extent to which the AFOQT and MAB measure the same constructs. If there is considerable overlap between the two batteries, further research may be directed toward using the AFOQT for clinical assessment and the MAB for officer and aircrew selection. #### **METHOD** #### **Participants** Participants were 2,233 US Air Force pilot candidates who completed the AFOQT and a computerized version of the MAB. The sample had a mean age of 20.6 years and was predominantly male (92%) and White (87%). #### Measures Air Force Officer Qualifying Test. The AFOQT is a paper-and-pencil multiple aptitude battery used for officer commissioning and aircrew training selection (Skinner & Ree, 1987). It is developed and maintained by the USAF. Administration time is about 4 hours. The 16 AFOQT tests are combined to create five operational composites: Verbal, Quantitative, Academic Aptitude, Pilot, and Navigator-Technical. It has an hierarchical factor structure and measures general cognitive ability (g) and the lower-order factors of verbal, math, spatial, aircrew interest/aptitude, and perceptual speed (Carretta & Ree, 1996). Multidimensional Aptitude Battery. The MAB is a broad-based test of intellectual ability. It was patterned after the Wechsler Adult Intelligence Scale (WAIS-R; full-scale $\underline{r} = .91$). Although the MAB requires about the same amount of time to administer as the WAIS-R (about 1.5 hours), it can be group-administered and machine scored, while the WAIS-R cannot. The paper-and-pencil version of the MAB was developed by Jackson (1985) and the computerized version by the USAF Armstrong Laboratory (Retzlaff, King, & Callister, 1995). The computerized version was developed and used with the consent of the test author with explicit copyright permission. The two versions have the same 10 tests with identical items. The tests are Information, Comprehension, Arithmetic, Similarities, Vocabulary, Digit Symbol, Picture Completion, Spatial, Picture Arrangement, and Object Assembly. These tests are combined to form three composites: Full Scale (all 10 tests), Verbal (first five tests), and Performance (last five tests). The MAB was administered on a 386-based computer with a 14-inch color monitor. Participants entered their responses using a keypad and mouse or light pen. #### Procedures The AFOQT was completed as a requirement of application for officer commissioning and/or aircrew selection. The time frame for AFOQT-testing varied. Some took the AFOQT near the completion of high school or while in college. Others took it after completing college. All participants completed the MAB shortly before beginning the Enhanced Flight Screening Program. MAB testing was done to establish an ideographic cognitive baseline for the clinical evaluation of pilots for comparative purposes after sustaining a head injury or other neurological insult. #### Analyses The participants represented a range-restricted sample because they had already been selected for college and for an officer commissioning program based on AFOQT and/or college entrance exams. The Lawley correction procedure (Lawley, 1943; Ree, Carretta, Earles, & Albert, 1994) was applied to estimate the means, variances, and correlations of the tests as they would be found in USAF officer applicants (Skinner & Ree, 1987). The confirmatory factor analyses were conducted using the range-restriction-corrected data as it provided a superior estimate of the means, standard deviations, and correlations. Hierarchical confirmatory factor analyses (HCFAs) were performed using LISREL 8 (Jöreskog & Sörbom, 1996). The first-order confirmatory factor analysis (CFA) allowed all observed variables (16 AFOQT and 10 MAB tests) to load on their first-order factors and those first-order factors to correlate with each other. The first-order factors included the five lower-order AFOQT factors of verbal, math spatial, aircrew interest/aptitude, and perceptual speed and two MAB factors representing the MAB Verbal (first five tests) and Performance (last five tests) composites. A higher-order CFA was then conducted using the first-order factor intercorrelation matrix. This higher-order CFA allowed the five AFOQT factors to load on a higher-order general factor (g_{MAB}). These two general factors were allowed to correlate and between-battery relationships among the lower-order factors were examined. Generalized least squares estimation procedures were used. Although it may appear that the higher-order g_{MAB} factor is underdefined with only two indicators, Costner (1969) discusses the circumstances under which two indicators are sufficient. Generally, it is not required that all correlations between different pairs of indicators be identical. Rather, it is required that several estimates of a single abstract coefficient (e.g., factor loading) be consistent. Several fit indices were computed. These included the χ^2 , Comparative Fit Index (CFI) (Bentler, 1990), Non-Normed Fit Index (NNFI) (Marsh, Balla, & McDonald, 1988), and Root Mean Square Error of Approximation (RMSEA) (Browne & Cudeck, 1993). ## RESULTS AND DISCUSSION Table 1 shows the means and standard deviations of the tests in observed and corrected-for-range-restriction form. The observed AFOQT means were on average about .90 standard deviations above the normative values and the variances were about 77 % of the normative values for USAF officer applicants (Skinner & Ree, 1987). The observed means for the MAB tests were about 1 standard deviation above the normative value of 50 and the variances were about 54% of the normative value of 100 for adults (Jackson, 1985). After correction for range restriction (to USAF officer applicant norms), the MAB tests were still about .62 standard deviations above their normative value and the variances were about 69% of the adult normative value of 100. This suggests that USAF officer applicants are above adult norms on the construct measured by the MAB (i.e., intellectual ability). Table 1. Means and Standard Deviations for AFOQT and MAB Scores | | | Obse | rved | Corrected | | | | |----------------------|-------|-------|------|-----------|-------|--|--| | Score | Abbr. | Mean | SD | Mean | SD | | | | AFOQT | | | | | | | | | Verbal Analogies | VA | 18.29 | 3.31 | 13.36 | 4.23 | | | | Arithmetic Reasoning | AR \ | 18.43 | 4.57 | 11.00 | 4.40 | | | | Reading Comprehensi | on RC | 17.93 | 4.34 | 15.83 | 5.93 | | | | Data Interpretation | DI | 18.81 | 3.83 | 11.15 | 3.93 | | | | Word Knowledge | WK | 16.86 | 4.84 | 13.28 | 5.83 | | | | Math Knowledge | MK | 19.87 | 4.39 | 14.48 | 6.04 | | | | Mechanical Comp. | MC | 11.60 | 3.72 | 9.78 | 3.65 | | | | Electrical Maze | EM | 8.89 | 3.31 | 7.68 | 4.22 | | | | Scale Reading | SR | 27.93 | 5.88 | 20.07 | 6.73 | | | | Instrument Comp. | IC | 15.08 | 4.13 | 8.82 | 4.76 | | | | Block Counting | BC | 14.22 | 3.44 | 10.62 | 4.39 | | | | Table Reading | TR | 30.69 | 5.96 | 26.46 | 7.35 | | | | Aviation Information | AI | 13.31 | 4.24 | 8.65 | 4.08 | | | | Rotated Blocks | RB | 9.94 | 2.76 | 7.59 | 3.36 | | | | General Science | GS | 11.43 | 3.52 | 8.54 | 3.66 | | | | Hidden Figures | HF | 10.89 | 2.75 | 9.60 | 2.76 | | | | MAB | | | | ı | | | | | Information | INF | 66.80 | 6.89 | 64.36 | 7.18 | | | | Comprehension | COM | 59.74 | 4.36 | 58.17 | 4.60 | | | | Arithmetic | ARI | 60.89 | 6.23 | 54.72 | 6.60 | | | | Similarities | SIM | 59.82 | 8.66 | 56.14 | 9.15 | | | | Vocabulary | VOC | 60.29 | 9.33 | 58.15 | 10.02 | | | | Digit Symbol | DIG | 63.10 | 6.98 | 58.15 | 7.81 | | | | Picture Completion | PC | 59.47 | 6.43 | 56.44 | 6.79 | | | | Spatial | SPA | 59.10 | 8.94 | 54.04 | 9.68 | | | | Picture Arrangement | PA | 51.95 | 7.01 | 48.33 | 7.45 | | | | Object Assembly | OBJ | 58.94 | 7.58 | 53.68 | 8.31 | | | Note. Means and standard deviations were corrected for range restriction using the multivariate Lawley (1943) procedure. An AFOQT officer applicant sample was used (Skinner & Ree, 1987). The correlations among the tests are shown in Table 2. The observed correlations (above the diagonal) were positive with two exceptions involving the AFOQT Aviation Information test and two MAB tests (AI and DIG = -.010; AI and SPA = -.007). The largest observed correlation was between two AFOQT math tests, AR and DI (.636). Table 2. Correlation Matrix for AFOQT and MAB Scores | OBJ | 286 | 285 | 207 | 258 | 209 | 274 | 303 | 244 | 227 | 217 | 292 | 154 | 032 | 368 | 270 | 298 | 152 | 148 | 215 | 267 | 123 | 314 | 389 | 407 | 376 | 100 | |-------------|-------|-------|-------|--------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|------|-------|-------|-----| | PA | 215 | 200 | 229 | 220 | 188 | 170 | 187 | 150 | 187 | 189 | 199 | 165 | 011 | 210 | 153 | 171 | 159 | 177 | 157 | 197 | 158 | 286 | 293 | 254 | 100 | 457 | | SPA | 193 | 187 | 113 | 162 | 087 | 167 | 245 | 253 | 172 | 235 | 289 | 123 | -007 | 404 | 144 | 263 | 113 | 690 | 163 | 106 | 770 | 255 | 269 | 100 | 339 | 500 | | PC | 354 | | | | SIM VOC DIG | 230 | 284 | 214 | 290 | 153 | 301 | 6/0 | 169 | 301 | 100 | 261 | 318 | 010 | 197 | 112 | 156 | 123 | 134 | 287 | 232 | 159 | 100 | 337 | 381 | 391 | 445 | | NOC | 351 | 210 | 397 | 217 | 494 | 2.11 | 207 | 022 | 061 | 032 | 011 | 010 | 085 | 084 | 298 | 083 | 293 | 302 | 187 | 301 | 100 | 243 | 257 | 141 | 238 | 195 | | SIM | 315 | 233 | 335 | 247 | 316 | 227 | 166 | 073 | 140 | 074 | 049 | 072 | 037 | 111 | 244 | 118 | 191 | 369 | 198 | 100 | 377 | 325 | 328 | 189 | 280 | 341 | | | 299 | 558 | 322 | 452 | 277 | 427 | 234 | 173 | 431 | 680 | 229 | 209 | 9/0 | 209 | 268 | 173 | 174 | 233 | 100 | 277 | 246 | 412 | 246 | 298 | 272 | 344 | | COM ARI | , , | ٠. | ٠. | ٠. | ٠, | | ٠, | | | _ | _ | _ | | | ٠, | _ | ٠, | | | | | | | 151 | | | | INF | , , | | | | | | | _ | | _ | _ | _ | _ | | ٠. | | | | | | | | | 188 | | | | HF) | 1 , , | ٠, | | ٠, | | | ٠, | • • | ٠, | ٠, | | | _ | | | , , | | | | | | | | 338 | | | | GS | | | | | | | | | | | | _ | | | | | | | | | | | | 272 | | | | RB | | | | | | | - | | | | | | | | | | | | | | | | | 519 | | | | AI | 176 | | | | TR | 143 | 270 | 177 | 296 | 131 | 201 | 111 | 243 | 428 | 266 | 410 | 100 |) 210 | 340 | 250 | 360 | 129 | 145 | 350 | 191 | 120 | 459 | 212 | 254 | 283 | 307 | | BC | 452 | | | |) IC | | | | | | | | ٠. | • • | | | | | | | | | | | | | | | 345 | | | | M SR | 382 | | | | MC EM | I — | ٠, | | • | _ | | | | | | | | | | | | | | | | - | | | 361 | • • | | | 1 ' | 389 | 379 | 362 | 333 | 349 | 0 28 | 0 100 | 0 44(| 0 480 | 0 49(| 0 500 | 0 300 | 0 20(|) 54(|) 57(| 39(| 7 25(| 307 | 1 365 | 242 | 1 242 | 3 274 | 42(| 3 376 | 301 | 426 | | WK MK | 407 | 620 | 369 | 471 | 375 | 0 10 | 0 48 | 0 40 | 09 0 | 0 39 | 0 49 | 0 440 |) 25(| 0 49 |) 52(| 0 400 | 5 30 | 1 29(| 237 | 32(| 7 254 | 2 493 | 33] | 378 | 337 | 461 | | M | 5 210 | | | | VA AR RC DI | 325 | | | | R RC | 573 | 445 | 0 100 | 0 55 | 0 77 | 0 51 | 0 46 | 0 23(| 0 45 | 0 33(| 0 400 | 35(| 34(| 0 35(| 0 55(| 98 (| 5 42; | 5 49. | 8 43(| 4 45 | 516 | 38; | 336 |) 269 | 371 | 366 | | A A | 479 | 0 100 | 0 58 | <i>L</i> 9 0 | 0 46 | 0.5 | 0 51 | 0 37 | 99 0 | 0 41 | 0 53(| 0 44(| 0 310 | 0 47 | 0 49 | 0 40 | 299 | 1 33; | 8 | 7 324 | 0 27(| 5 449 | 4 32 | 360 | 1 343 | 437 | | Λ, | 100 | 28 | 73 | 53 | 89 | 55 | 48 | 27 | 48 | 34(| 45(| 34(| 30 | 43(| 51(| 40 | 38, | 40 | 41 | 45. | 45(| 41; | 437 | 355 | 364 | 44(| | Score | ΛA | AR | RC | DI | WK | MK | MC | EM | SR | C | BC | TR | ΑI | RB | GS | HF | IZ
F | COM | ARI | SIM | VOC | DIG | PC | SPA | PA | OBJ | Note. Decimals were omitted to conserve space. Correlations above the diagonal were observed. Correlations below the diagonal were corrected for range restriction. Lawley's(1943) multivariate correction was applied to the tests. An AFOQT officer applicant sample was used as a reference group (Skinner & Ree, 1987). All correlations were positive after correction for range restriction (below the diagonal). See Ree et al. (1994) for an explanation of change in correlation sign after correction for range restriction. The largest correlation after correction for range restriction was between two AFOQT verbal tests, RC and WK (.770) and the smallest correlation (.071) was between a spatial test from the AFOQT (EM) and a verbal test from the MAB (VOC). The correlations among the 26 tests were used to estimate a seven-factor, first-order CFA (5 lower-order AFOQT factors and 2 lower-order MAB factors). The χ^2 (275) was 2,032.791, CFI was .974, the NNFI was .970, and the RMSEA was .053. This is evidence of a good fit. The factor loadings for this lower-order model are shown in Table A1. The resulting correlation matrix for the lower-order factors (Table 3) was used to estimate the hierarchical model. Table 3 shows the correlations among the first-order factors. They ranged from .450 (aviation and MAB verbal) to .895 (AFOQT verbal and math) with a mean value of .727. An examination of the between-battery correlations showed the AFOQT verbal and math factors to have higher correlations with the MAB verbal factor, while the AFOQT spatial, aviation, and perceptual speed factors had higher correlations with the MAB performance factor. The MAB verbal factor showed its highest between-battery correlation with the AFOQT verbal factor (.893) and its lowest correlation with aviation (.450). The MAB performance factor had its highest between-battery correlation with spatial (.854) and its lowest correlation with aviation (.587). The correlation between the two MAB factors was .787. Table 3. First-Order Factor Intercorrelations | Factor ^a | Verbal | Math | Spatial | Aviation | Percep.
Speed | | MAB
Performance | |---------------------|--------|-------|---------|----------|------------------|-------|--------------------| | Verbal | 1.000 | | | | | | | | Math | 0.895 | 1.000 | | | | | | | Spatial | 0.781 | 0.825 | 1.000 | | | | | | Aviation | 0.560 | 0.652 | 0.808 | 1.000 | | | | | Perceptual Speed | 0.651 | 0.719 | 0.834 | 0.677 | 1.000 | | | | MAB Verbal | 0.893 | 0.858 | 0.719 | 0.450 | 0.530 | 1.000 | | | MAB Performance | 0.768 | 0.754 | 0.854 | 0.587 | 0.683 | 0.787 | 1.000 | ^aThe first five factors were from the AFOQT and the last two factors were from the MAB. The hierarchical model is shown in Figure 1. The loadings of the lower-order factors on their respective higher-order factors were high, ranging from .775 to .976. This indicated that the lower-order factors were essentially measures of their respective higher-order factors. The strong correlation between the two higher-order factors (.981) indicated that they measured the same higher-order factor. Because of the strength of this correlation and because the higher-order AFOQT factor is known to be psychometric g, it is apparent that the higher-order factor in the MAB also is g. General cognitive ability accounted for more variance than the sum of the lower-order factors for both batteries. The proportion of common variance accounted for by g was similar for the two batteries: 67.2% for the AFOQT (Carretta & Ree, 1996) and 67.7% for the MAB. Figure 1. Hierarchical Model. Note. The higher-order factors were g_{AFOQT} and g_{MAB} , respectively. The lower-order AFOQT factors were Verbal, Math, Spatial, Aviation Interest/Aptitude, and Perceptual Speed. The lower-order MAB factors were MAB Verbal and MAB Performance. Similar results were reported by Sperl, Ree, and Steuck (1992) and by Stauffer, Ree, and Carretta (1996). Sperl et al. examined the relationship between the verbal and math tests from the AFOQT and Armed Services Vocational Aptitude Battery (ASVAB). They found a first canonical correlation between the two batteries of .93 indicating a high level of common variance. Stauffer et al. examined the common sources of variance between all 10 ASVAB tests and a set of computer-based cognitive components tests. As in the current study, Stauffer et al. found a strong correlation (.994) between the higher-order factors from the two batteries indicating both higher-order factors measured the same construct. These results suggest that both the AFOQT and MAB may be acceptable for establishing a clinical cognitive baseline for USAF pilot trainees. Both batteries measure psychometric g as well as verbal, spatial, and perceptual speed (the later two factors are subsumed in the MAB performance factor). However, it is not clear that the two batteries identically measure the lower-order factors. The chief advantage of the MAB over the AFOQT for use as a clinical assessment tool is its similarity to standard clinical intelligence tests such as the WAIS-R. Air Force clinical psychologists routinely use the WAIS-R to evaluate pilots referred for cognitive assessment. Because of its similarity to the WAIS-R, clinicians find it relatively easy to make pre- and post-incident comparisons using baseline MAB data. If the AFOQT were to be used instead of the MAB for making pre- and post-incident comparisons, clinicians would need training to become more familiar with the AFOQT and its relation to the WAIS-R or MAB. Although the AFOQT takes longer to administer than the MAB (4 hours vs. 1.5 hours), it is already in operational use for officer commissioning and aircrew selection so would not require any special administration as does the MAB. Further, the AFOQT includes tests of aviation interest/aptitude not covered by the MAB (i.e., Instrument Comprehension and Aviation Information). These tests have been shown to be useful for predicting pilot performance beyond measures of g and specific cognitive abilities such as verbal, math, spatial, and perceptual speed (Olea & Ree, 1994; Ree & Carretta, 1996; Ree, Carretta, & Teachout, 1995). Therefore, if the MAB were to be used in place of the AFOQT, it would be desirable to retain at least the aviation interest/aptitude portions of the AFOQT to ensure no loss of validity for predicting pilot training performance. Additional studies are planned to evaluate the utility of the AFOQT for clinical assessment and the utility of the MAB for officer and aircrew selection. If the two batteries are interchangeable, the Air Force may be able to save administration time by using one test for both purposes. #### REFERENCES - Arth, T. O. (1986). Validation of the AFOQT for non-rated officers (AFHRL-TP-85-50, AD A164 134). Brooks AFB, TX: Air Force Human Resources Laboratory, Manpower and Personnel Division. - Arth, T. O., & Skinner, M. J. (1986). Aptitude selection for Air Force officer non-aircrew jobs. Paper presented at the 28th annual meeting of the Military Testing Association, Mystic, CT. - Arth, T. O., Steuck, K. W., Sorrentino, C. T., & Burke, E. F. (1990). Air Force Officer Qualifying Test (AFOQT): Predictors of undergraduate pilot training and undergraduate navigator training (AFHRL-TP-89-52). Brooks AFB, TX: Air Force Human Resources Laboratory, Manpower and Personnel Division. - Bentler, P. M. (1990). Comparative fit indexes in structural models. *Psychological Bulletin*, 107, 238-240. - Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Lang (Eds.). *Testing statistical equation models* (pp. 136-162). Newbury Park, CA: Sage. - Callister, J. D., King, R. E., & Retzlaff, P. D. (1996). Cognitive assessment of USAF pilot training candidates. *Aviation, Space, and Environmental Medicine, 67*, 1124-1129. - Carretta, T. R. (1992). Recent developments in U. S. Air Force pilot candidate selection and classification. *Aviation, Space, and Environmental Medicine*, 63, 1112-1114. - Carretta, T. R., & Ree, M. J. (1995). Air Force Officer Qualifying Test Validity for predicting pilot training performance. *Journal of Business and Psychology*, *9*, 379-388. - Carretta, T. R., & Ree, M. J. (1996). Factor structure of the Air Force Officer Qualifying Test: Analysis and comparison. *Military Psychology*, 8, 29-42. - Costner, H. L. (1969). Theory, deduction, and rules of correspondence. *American Journal of Sociology*, 75, 245-263. - Finegold, L., & Rogers, D. (1985). Relationship between Air Force Officer Qualifying Test scores and success in air weapons controller training (AFHRL-TR-85-13, AD A158 162). Brooks AFB, TX: Air Force Human Resources Laboratory, Manpower and Personnel Division. - Jackson, D. N. (1985). *Multidimensional aptitude battery*. Port Huron, MI: Research Psychologists Press. - Jöreskog, K., & Sörbom, D. (1996). LISREL 8: User's reference guide. Chicago, IL: Scientific Software International. - King, R. E., & Flynn, C. F. (1995). Defining and measuring the "right stuff": Neuropsychiatrically enhanced flight screening (N-EFS). *Aviation, Space, and Environmental Medicine*, 66, 951-956. - Koonce, J. M. (1982). Validation of a proposed pilot trainee selection system. *Aviation, Space, and Environmental Medicine*, 53, 1166-1169. - Lawley, D. N. (1943). A note on Karl Pearson's selection formulae. *Proceedings of the Royal Society of Edinburgh*, Section A, 62, Part 1, 28-30. - Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. *Psychological Bulletin*, 103, 391-410. - Olea, M. M., & Ree, M. J. (1994). Predicting pilot and navigator criteria: Not much more than g. *Journal of Applied Psychology*, 79, 845-849. - Ree, M. J., & Carretta, T. R. (1996). Central role of g in military pilot selection. *The International Journal of Aviation Psychology*, 6, 111-123. - Ree, M. J., Carretta, T. R., Earles, J. A., & Albert, W. (1994). Sign changes when correcting for range restriction: A note on Pearson's and Lawley's selection formulas. *Journal of Applied Psychology*, 79, 298-301. - Ree, M. J., Carretta, T. R., & Teachout, M. S. (1995). Role of ability and prior job knowledge in complex training performance. *Journal of Applied Psychology*, 80, 721-730. - Retzlaff, P. D., Callister, J. D., & King, R. E. (1996). *The computerized neuropsychological evaluation of US Air Force pilots: Clinical procedures and data-based decision* (AL/AO-TR-1996-0107). Brooks AFB, TX: Clinical Sciences Division, Armstrong Laboratory. - Retzlaff, P. D., King, R. E., & Callister, J. D. (1995). Comparison of a computerized version to a paper/pencil version of the Multidimensional Aptitude Battery (AL/AO-TR-1995-0121). Brooks AFB, TX: Clinical Sciences Division, Armstrong Laboratory. - Skinner, J., & Ree, M. J. (1987). Air Force Officer Qualifying Test (AFOQT): Item and factor analysis of form O (AFHRL-TR-86-68). Brooks AFB, TX: Manpower and Personnel Division, Air Force Human Resources Laboratory. Sperl, T. C., Ree, M. J., & Steuck, K. W. (1992). Armed Services Vocational Aptitude Battery and Air Force Officer Qualifying Test: Analyses of common attributes. *Military Psychology*, *4*, 175-188. Stauffer, J. M., Ree, M. J., & Carretta, T. R. (1996). Cognitive-components tests are not much more than g: An extension of Kyllonen's analyses. *The Journal of General Psychology*, 123, 193-205. # **APPENDIX A:** Confirmatory Factor Analysis Solution for the Seven-Factor First-Order Model Table A1. <u>Factor Loadings for the Seven-Factor Lower-Order Model</u> | | | Factor | | | | | | | | | | | | | | |-------------|--------|--------|---------|----------|-------|---------------|------------------|----|--|--|--|--|--|--|--| | Score | Verbal | Math | Spatial | Aviation | | MAB
Verbal | MAB
Performan | ce | | | | | | | | | VA | 0.838 | | | | | | | | | | | | | | | | AR | | 0.845 | | | | | | | | | | | | | | | RC | 0.896 | | | | | | | | | | | | | | | | DI | | 0.767 | | | | | | | | | | | | | | | WK | 0.864 | | | | | | | | | | | | | | | | MK | | 0.795 | | | | | | | | | | | | | | | MC | | | 0.781 | | | | | | | | | | | | | | EM | | | 0.547 | | | | | | | | | | | | | | SR | | 0.386 | | | 0.471 | | | | | | | | | | | | IC | | | | 0.794 | | | | | | | | | | | | | BC | | | 0.454 | . ' | 0.321 | | | | | | | | | | | | TR | | | | | 0.666 | | | | | | | | | | | | AI | | | | 0.756 | | | | | | | | | | | | | RB | | | 0.702 | | | | | | | | | | | | | | GS | 0.515 | | | 0.322 | | | | | | | | | | | | | HF | | | 0.570 | | | | | | | | | | | | | | INF | | | | | | 0.524 | | | | | | | | | | | COM | | | | | | 0.596 | | | | | | | | | | | ARI | | | | | | 0.662 | | | | | | | | | | | SIM | | | | • | | 0.597 | | | | | | | | | | | VOC | | | * | | • | 0.649 | * | | | | | | | | | | DIG | | | | | | | 0.648 | | | | | | | | | | PC | | | | | | | 0.652 | | | | | | | | | | SPA | | | | | | | 0.597 | • | | | | | | | | | PA | | | | | | | 0.580 | | | | | | | | | | OBJ | | | 1 | | | | 0.715 | | | | | | | | | | CD 3 | | • | | | | | 0.715 | | | | | | | | |